

 Elixir Learners Documentation

 v0.1.0

 Table of contents

 	Join the Discord

 	How to contribute

 	Documentation Layout

 	Learning Resources

 	Community Projects

 	Creating Discord Bots

 	Ecto explained

 	Contributors

 	CI/CD Workflow

 	LICENSE

Join the Discord

Come join the Discord here. Ask questions, write Elixir code, and hangout out!
All experince levels are welcome.

How to contribute

 Step 1 - Get Access

First you will need acces to the ElixirLearners documentation
repository on Github. To get access you can contact either faroutchris or Zexanima in discord.

 Step 2 - Get the documentation

After you've been granted access, clone the repository to your local machine. If you're unfamiliar with ex_doc be sure
to read up on the documentation. Create a branch with;
$ git branch <my-branch-name> main

Swap to the branch;
$ git checkout <my-branch-name>

 Step 3 - Test your changes

Once in your branch, create the documentation as markdown files in the folder /markdown.
Be sure to check if there is a markdown file related to what you're doing and append to it. Only
create a new markdown file if something simliar doesn't exist. For instance if you're adding a
project you're working on, add it to the markdown/projects.md file. If you do add a new file
be sure to update the mix.exs file to include it.
...
 def project do
 [
 app: :els_docs,
 version: "0.1.0",
 elixir: "~> 1.14",
 start_permanent: Mix.env() == :prod,
 deps: deps(),
 # Docs
 name: "Elixir Learners Documentation",
 source_url: "https://github.com/elixirlearners/els-docs",
 docs: [
 api_reference: false,
 authors: [
 "Caleb Gasser"
],
 before_closing_head_tag: &add_mermaid_graph_support/1,
 extras: [
 "markdown/contributing.md",
 "markdown/doc_layout.md",
 "markdown/learning_resources.md",
 "markdown/projects.md",
 "markdown/bots.md",
 "markdown/contributors.md",
 "markdown/my_new_file.md", # <------- Like this
 "LICENSE",
]
]
]
 end
...

 Step 4 - Contribute

Don't forget to add yourself to the Contributors section if you have not already!
After your finished push up your changes and create a pull request.
After the changes have be reviewed and merged, it will be built and deployed to the github page. Thats it!

Documentation Layout

 Adding a project

There is a projects.md file that contains all the projects
the community is working on. If you would like to add a project, do it in this file.
You can follow the format the Kata Discord Bot uses.

Learning Resources

 Books

 Programming Elixir 1.6 by Dave Thomas

This book is the introduction to Elixir for experienced programmers, completely updated for Elixir 1.6 and beyond. Explore functional programming without the academic overtones (tell me about monads just one more time). Create concurrent applications, but get them right without all the locking and consistency headaches. Meet Elixir, a modern, functional, concurrent language built on the rock-solid Erlang VM. Elixir’s pragmatic syntax and built-in support for metaprogramming will make you productive and keep you interested for the long haul. Maybe the time is right for the Next Big Thing. Maybe it’s Elixir.

 The Little Ecto Cookbook

This book is a curated collection of the Ecto guides on how to best use different features of Ecto 3.10 and later. This free ebook is made of 14 chapters:

 Websites

 Offical Elixir Guide

 Joy of Elixir

Short and sweet website to get you started

 Elixir School

Elixir School is the premier destination for people looking to learn and master the Elixir programming language. Whether you’re a seasoned veteran or this is your first time, you’ll find what you need in lessons and auxiliary resources.

 Articles

 The Repository Pattern, Ecto, and Database-less Testing

In this blog post, we’ll be talking about what exactly the repository pattern is, how it applies to Ecto, and how you can go about testing your Ecto backed applications without using a database. We’ll play around with this concept by putting together a simple Elixir application that leverages Postgres during development. But, then we will write some tests that make use of a database-less mock Repo. Without further ado, let’s dive right into things!

 Youtube

 Elixir Conf

Offical Elixir conference youtube page. They have lots of great talk about all kinds of
Elixir topics.

Community Projects

 Kata Discord Bot

 Resources

	Github Repo
	Project Board

 Idea overview

A discord bot that posts a daily "Kata". These should be short programming problems
that can be solved in <1 hour. They could be Elixir specific, but I think it might
be more useful for them to be "general" story problems that require you to implement
some kind of basic programming algorithm then you CAN use Elixir to solve it but other
languages would work too. I think making them general and not specific may make this
bot useful for more than just this discord. Of course, the actual bot will be written
in Elixir. The problems should be in the format of;
	Story Question
	Restrictions
	Optional Bonus Restrictions
	Input (This can be plain text or a link to a text file)
	Expected Output (Hidden with a spoiler or something)
	Here would be an example;

Problem
Being the good person you are, you decided help your local library digitize a bunch
of old books, magazines, ect. for archiving purposes. They've collected all sorts of
texts and apparently someone thought it would be useful to archive a bunch of old
phone books. Luck you, they already scanned them all and ran them through a
image-to-text AI that generated a text file containing the data! Unlucky for
you, it jumbled up the ordering so all the phone numbers got mixed up. Could
you be a pal and sort them?
Restrictions
You cannot use any external or built in sorting functions.
Bonus
Write one with quick sort and one with bubble sort. Which one is faster?
Input
[333-333-3333, 111-111-1111, 222-222-2222]
Expected
![111-111-1111, 222-222-2222, 333-333-3333]

 Functional Decomposition

title: Kata Bot Functional Decomposition

flowchart TD
 subgraph nostrum
 Api.create_message
 Api.create_message --> Discord
 user_msg[Incoming user message]
 end

 subgraph KataBot
 user_msg --> handle_event[handle_event :: MESSAGE_CREATE :: msg :: ws_state]
 end

 subgraph KataBot.KataStruct
 id
 name
 questions
 restrictions
 bonus_restrictions
 input
 expected_output
 end

 subgraph KataBot.Commands
 handle_event --> create_kata[create_kata KataStruct -> KataStruct]
 create_kata --> Api.create_message
 handle_event --> list_kata[list_kata channel_id -> List of KataStruct]
 list_kata --> Api.create_message
 handle_event --> get_random[get_random_kata nil -> KataStruct]
 end

 subgraph Ecto
 create_kata --> EctoDB[(EctoDB)]
 EctoDB --> list_kata
 EctoDB --> get_random
 end

 Pots

 Resources

	Github Repo
	hex.pm

 Idea overview

Provide some wrapper funtionality around initializing new Dockerfiles
for Elixir projects and running them. There should also be a basic config
file that Pots will read in and use for generating the file and running
certain tasks.
For instance, if you want the mix pot.new task to create a Dockerfile that
includes certain ARG or ENV variables. The following commands
are currently supported;
	mix pot.new generate inital Dockerfile
	mix pot.build build the image from the Dockerfile
	mix pot.run to run the image detached mode
	mix pot.clean to remove all docker images/containers. Can be passed --file to
clean up generated Dockerfiles.
	mix pot.info to print information on the created images and running containers.

Creating Discord Bots

 Dependencies

At the time of writing this, the most mature library I could find
for creating a Discord bot is nostrum.
Even though it looks well documented I ran into a few hitches. For one, I had to
use the version directly on github as I kept running into issues with the
Nostrum.Api.Ratelimiter crashing. I would try the version out on hex.pm first but
if you're getting an error like mine, or any error at all, give this a shot in
your mix.exs;
def deps do
 [{:nostrum, github: "Kraigie/nostrum"}]
end

 Config

I'll assume you've generated a project with mix new --sup my_project. After that
you'll need add a config/config.exs with a few settings.
import Config
config :nostrum,
 token: "<your-discord-bot-token-here>",
 gateway_intents: :all
For testing, I decided to just use gateway_intents: :all but you can fine tune this
to be more exact.

 Some example code

To test it out, you can this to your application's module. I ripped this
directly from their documentation so be sure to check there if this doesn't
work for you.
lib/my_app.ex
defmodule MyBot do
 use Nostrum.Consumer

 alias Nostrum.Api

 def handle_event({:MESSAGE_CREATE, msg, _ws_state}) do
 IO.inspect msg
 case msg.content do
 "!sleep" ->
 Api.create_message(msg.channel_id, "Going to sleep...")
 # This won't stop other events from being handled.
 Process.sleep(3000)

 "!ping" ->
 Api.create_message(msg.channel_id, "pyongyang!")

 "!raise" ->
 # This won't crash the entire Consumer.
 raise "No problems here!"

 _ ->
 :ignore
 end
 end

 # Default event handler, if you don't include this, your consumer WILL crash if
 # you don't have a method definition for each event type.
 def handle_event(_event) do
 :noop
 end
end
You'll also need to make sure you add it to your application supervisor.
application.ex
 use Application

 @impl true
 def start(_type, _args) do
 children = [
 MyBot #<<<< Here
]

 opts = [strategy: :one_for_one, name: MyBot.Supervisor]
 Supervisor.start_link(children, opts)

 Lets run it!

After you've added the bot to the server (make sure to give it the correct permissions)
you can run it with iex -S mix. You should see some output from nostrum. Hop over
to your Discord server and send the message !ping and your bot should reply with
pyongyang!!

Ecto explained

 A nice little diagram

You may have to zoom in :P
[image: Ecto Diagram]
TODO

Contributors

 Caleb Gasser

	Discord: Zexanima
	Github: calebgasser
	Website: N/A

 Phan

	Discord: Zexanima
	Github: thisisphan
	Website: N/A

CI/CD Workflow

 1. Branching Strategy:

	Primary Branches: develop, release.
	Development Process:	Branch off from develop.
	Implement code changes in your feature/fix branch.
	Commit changes with linting and commit conventions enforced by Git hooks.

 2. Code Integration and Review:

	Push your branch and create a pull request directly to develop.
	Automated validations are performed on the PR.
	Code review and approval are required from designated reviewers (e.g., @thisisphan and @calebgasser).

 3. Release Process:

	Create a new release branch from develop when needed (e.g., alpha-0.1.1).
	Patches are released automatically each week.
	MAJOR and MINOR versions are deployed manually.

 4. Tools and Utilities:

	Git Hooks: Pre-commit.
	Testing Github Actions: act.
	Linting: ESLint (JS), Markdown Lint (Docs).
	Code Formatting: Elixir pre-commit hooks.
	Commit Linting: commitlint.
	Code Coverage: excoveralls.

 5. Versioning Conventions:

	Follow Semantic Versioning (SemVer):	MAJOR: Incompatible API changes.
	MINOR: Backwards-compatible feature additions.
	PATCH: Bug fixes and minor changes.

 6. Merging Conventions:

	Branch Naming: Related to the fix/feature.
	Review Requirements: Include specific team members for pull requests.
	Pre and Post Pull Request Actions:	Pre: Run mix format, mix credo, mix test, mix compile.
	Post: No additional actions required.

 7. GitHub Actions Workflow:

	Lint: Run linting processes.
	Test: Execute test suites.
	Format: Run mix format.
	Compile: Validate no compilation errors.
	Patch: Automate patch releases.
	Release: Manual creation of MAJOR/MINOR releases.

LICENSE

MIT License

Copyright (c) 2023 Caleb Gasser

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 OEBPS/dist/epub-TCI3LGHF.js
(()=>{var d=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function r(o){document.readyState!=="loading"?o():document.addEventListener("DOMContentLoaded",o)}var c="ex_doc:settings",h={tooltips:!0,theme:null,livebookUrl:null},s=class{constructor(){this._subscribers=[],this._settings=h,this._loadSettings()}get(){return this._settings}update(t){let e=this._settings;this._settings={...this._settings,...t},this._subscribers.forEach(n=>n(this._settings,e)),this._storeSettings()}getAndSubscribe(t){this._subscribers.push(t),t(this._settings)}_loadSettings(){try{let t=localStorage.getItem(c);if(t){let e=JSON.parse(t);this._settings={...this._settings,...e}}this._loadSettingsLegacy()}catch(t){console.error(`Failed to load settings: ${t}`)}}_storeSettings(){try{this._storeSettingsLegacy(),localStorage.setItem(c,JSON.stringify(this._settings))}catch(t){console.error(`Failed to persist settings: ${t}`)}}_loadSettingsLegacy(){localStorage.getItem("tooltipsDisabled")!==null&&(this._settings={...this._settings,tooltips:!1}),localStorage.getItem("night-mode")==="true"&&(this._settings={...this._settings,nightMode:!0}),this._settings.nightMode===!0&&(this._settings={...this._settings,theme:"dark"})}_storeSettingsLegacy(){this._settings.tooltips?localStorage.removeItem("tooltipsDisabled"):localStorage.setItem("tooltipsDisabled","true"),this._settings.nightMode!==null?localStorage.setItem("night-mode",this._settings.nightMode===!0?"true":"false"):localStorage.removeItem("night-mode"),this._settings.theme!==null?(localStorage.setItem("night-mode",this._settings.theme==="dark"?"true":"false"),this._settings.nightMode=this._settings.theme==="dark"):(delete this._settings.nightMode,localStorage.removeItem("night-mode"))}},f=new s;function l(){["warning","info","error","neutral","tip"].forEach(t=>{i(`blockquote h3.${t}, blockquote h4.${t}`).forEach(e=>{e.closest("blockquote").classList.add(t)})})}document.addEventListener("click",function(o){if(window.innerWidth<=768){let t=o.target.closest('a[href^="#"]');if(t){o.preventDefault();let e=t.getAttribute("href").substring(1),n=document.getElementById(e);if(n){let u=n.getBoundingClientRect().top+window.scrollY-45;window.scrollTo({top:u,behavior:"smooth"})}}}});var m="hll";function g(){p()}function p(){i("[data-group-id]").forEach(t=>{let e=t.getAttribute("data-group-id");t.addEventListener("mouseenter",n=>{a(e,!0)}),t.addEventListener("mouseleave",n=>{a(e,!1)})})}function a(o,t){i(`[data-group-id="${o}"]`).forEach(n=>{n.classList.toggle(m,t)})}r(()=>{g(),l()});})();

